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1 Basics

1.1 Equation of radiative energy transport

Radiation transports energy through a stellar atmosphere. The simple ap-
proximation of a plane parallel layering holds for relatively thin atmospheres

dIν

ds
= jν − κνIν (1)

Here jν denotes the emission and κν the absorption per Volume element. We
define the source function as

Sν =
jν

κν

(2)

Together with the optical depth

dτν = −κνdz (3)

→ dτν = −κνcosθds (4)

ds = − 1

κνcosθ
dτν (5)

we can write the simplified equation of radiative energy transport

−dIν

dτν

κνcosθ = jν − κνIν (6)

−cosθ
dIν

dτν

= Sν − Iν (7)

and its formal solution

Iν = −e−
τν

cosθ

∫ τν

const
Sνe

− t
cosθ

dt

cosθ
(8)

The intensity of the outward directed radiation (all contributions of τ =
C bis τ = ∞) at a certain depth τν = C is therefor

Iν(cosθ, C) = −e−
C

cosθ

∫ ∞
C

Sνe
− τν

cosθ
dτν

cosθ
(9)

This means, if we know the source function Sν as function of τν , we kann
easily calculate the intensity of the emitted energy spectrum.

2



1.2 Local Thermal Equilibrium (LTE)

Let us assume that we have local thermal equilibrium inside our stellar at-
mosphere. In this case we can express the level populations (i.e. probability
a level is occupied), ni, nj, of two energy levels of a species as following

ni

nj

=
gi

gj

e−
∆Eij

kT (10)

Here gi and gj are the statistical weights of these two energy levels. In the
case that one of these two levels is the continuum (0–level), we call the energy
difference ∆EiC the excitation energy (χi) of the state i. It is clear that the
number of particles is preserved

n =
∑

i

ni =
nC

gC

∑
gie
− χi

kT =
nC

gC

Un (11)

The sum Un generally is called the ’partition function’ or the ’partition sum’
of n.

1.3 Continuum source function

We can separate the contributions of spectral lines (κνL, jνL) and continuum
(κνC , jνC) to the energy balance and also to the source function.

jν = jνC + jνL (12)

κν = κνC + κνL (13)

Sν =
κνL

κν

SνL +
κνC

κν

Bν (14)

The reason for doing so is that now we can substitute the Plank function Bν

for the continuum part of the source function. Thus, we are left only with SL

to calculate the emitted radiation intensity. In many modern synthesis codes
this is not done, but time is saved by solving SνC on a much wider grid.

1.4 Atomic lines

Now we concentrate on the contribution of the atomic lines to the source
function. For convenience we will omit from now on the suffix ’L’ knowing
that we are dealing with spectral lines. First some definitions
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Φν ... line absorbtion profile; norm:
∫

Φνdν = 1
Ψν ... linie emission profile; norm:

∫
Ψνdν = 1

Aji ... probability for spontaneous emission (j 7→i)
Bij ... absorbtion coefficient (j 7→i)
Bji ... probability for induced absorbtion (i 7→j)

Using above quantities we can express SL as follows

SνL now Sν =
jν

κν

=
hνAjinjΨν

hν(Bijni −Bjinj)Φν

=
Ajinj

Bijni −Bjinj

Ψν

Φν

(15)

Furthermore holds

giBij = gjBji (16)

Aji =
2hν3

c2
Bji (17)

Putting this into above equation we get a general form for the contribution
of atomic lines to the source function

Sν =
2hν3

c2

1
nigj

njgi
− 1

Ψν

Φν

(18)

1.5 Absorbion profile

As shown in the previous subsection the line absorbtion κν depends on the
absorbtion coefficient Bij and the absorbtion profile Φν

κν = hνBij(ni − nj
gi

gj

)Φν (19)

The general shape of the absorbtion profile then again does not vary much
from line to line. In the following we will discuss the basic broadening mech-
anisms in stellar atmospheres.

Doppler broadening (∆λD)
Thermal (particle movement) line broadening because of the Doppler effect

∆λD =
λL

c

√
2kT

mn

+ v2
micro (20)
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where
λL ... central wavelength of the spectral line
mn ... mass of the atom, ion

Radiadive damping (γrad)

γrad =
∑
l<i

1

lifetime ni

+
∑
l<j

1

lifetime nj

(21)

Collisional damping: Stark effect (γst)
Collisions with other ions and electrons

γst ∼ ∆λ−2 ... Stark effect (H & He) (22)

γst ∼ ∆λ−4 ... quadratic Stark effect (23)

Collisional damping: Van der Waals (γvw)
Collisions with neutral atoms

γvw ∼ ∆λ−6 (24)

Radiative and collisional damping are usually combined to one damping con-
stant γ

γ = γrad + γst + γvw (25)

1.5.1 Voigt Profil

Let us take a closer look on the absorption process in a gas on microscopic
level. We have to average over an essemble of atoms the case of a photon
absorbed by a single atom. Because the atoms move around in the gas the
probability for a photon to be absorbed depends not only on the energetic
difference of the atomic levels involved (∆Eij) but also on the velocities
and directions of motion of the atoms. Be that the velocity distribution is
Maxwell’sh and our absorbtion profile Φ satisfies the normalization∫ ∞

−∞
Φ(ν)dν = 1 (26)

we get in direction vz (see also Cannon, [1985])

Φ(∆ν) =
γ

π3/2(∆νD)2

∫ ∞
−∞

e
v2
zmn
2kT

( ∆ν
∆νD

− vz
√

mn√
2kT

)2 + ( γ
∆νD

)2
d(

vz
√

mn√
2kT

) (27)
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or using the Voigt function

Φ(∆ν) =
1√

π∆νD

H(a,
∆ν

∆νD

) (28)

Here we have a = γ
∆νD

and the Voigt function

H(a, η) =
a

π

∫ ∞
−∞

e−y2

(y − η)2 + a2)
dy (29)

If we are not dealing with the very strong lines then a << 1. In the line
center, which is for small ∆ν we can simplify Φ to

Φ(∆ν) =
1√

π∆νD

e
−( ∆ν

∆νD
)2

+ terms of higher order (30)

Whereas for the line wings (large ∆ν) the equation for Φ simplifies to

Φ(∆ν) =
a∆νD

π(∆ν)2
+ . . . =

γ

π(∆ν)2
+ . . . (31)

1.6 Oszillator strengths

The transitions between the energetic niveaus are to be treated by the theory
of quantum mechanics. Thus the classical energy levels Ei and Ej are fuzzy

∆E ·∆t = h̄ ... Heisenberg (32)

The form of classical equations stays valid, but they have to be corrected
when we change from the classic transition probabilities to their quantum-
mechanical equivalents. To account for this one introduces oscillator strenghts

fij =
mnhν

πe2
Bij (33)

1.7 Theoretical curve of growth

Now we combine the equations we derived for κ, Bij, ni and Φ. Furthermore
we leave the frequency domain and transform the result into the wavelength
domain, ∆ν 7→ ∆λ

κ(∆λ) =
h

λ
Bijni(1−

njgi

nigj

)Φ(∆λ) (34)
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We can approximate the line core by

κ(∆λ) = Const. · fij · ni ·
λL

∆λD

· e−(
∆λL
∆λD

)2
(35)

and the wings

κ(∆λ) = Const. · fij · ni · γ ·
λ4

L

∆λ2
(36)

2 Geometric effects

Stars are not flat, but if they are not rotating to fast we can approximate
them as spheres. For example the synthesis code synth3 (Kochukhov, [2006])
solves the transfer equation for seven angles (i.e. seven rings). These contri-
butions to the total intensity spectrum are folded with instrumental, rotation
an turbulence profiles and integrated over the stellar disc.

2 line profiles showing
the difference between
spherical approxima-
tion (red) and simple
plane parallel aproxi-
mation (blue) in spec-
trum synthesis. Up-
per figure vsini =
100 km/s. Lower fig-
ure vsini = 10 km/s.

Working with straight forward plane parallel approximation may, as illus-
trated in the above figure, introduce quite large systematic errors when
analysing slower rotators. Fast rotators however set a different task since
effective temperature and surface gravity are not constant over the stellar
surface.
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3 Magnetic fields

Magnetic fields add more broadening mechanisms, fine structure and hyper-
fine structure, known as the Zeeman effect. Naturally the transfer equation
gets more complex and computation times considerably longer. The inter-
pretation of observed line profiles for the case of large, global magnetic fields
are quite tricky and requires usually more than just intensity profiles, since
not only the strength but also the geometry and orientation of the field has
to be considered.

Two Feii lines in the spec-
trum of HD18610 exhibit-
ing a global magnetic sur-
face field of the order of
7 kG. The Feii line at
6149.258 Å shows Zeeman
splitting, the other, Feii
6147.649, is rather insensi-
tive to the magnetic field.
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4 Velocity fields

Another property of stellar atmospheres that distorts the shape of spectral
lines is turbulent motion. Convective energy transport is a highly non-local
process which cannot be descriped properly by only algebraic equations. In
order to do so one needs to solve the Navier Stokes Equations, a non closed
set of differential equations, or numerically simulate part of the stellar at-
mosphere and envelope; a task which is still to time expensive in practical
spectroscopy. Thus several fudges, parametrizations and convection models
are in use: The mixing length theory, where all the kinetic energy is put into
one convection cell of a characteristic size. The non-locality is ignored. An-
other equally fast convection treatment was introduced by Canuto ([1992],
where this characteristic size varies with depth. Basicly all stellar evolution
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codes up to now use such a convection modelling. Turbulent velocity and
scale are specified as fixed parameters. Also in spectrum synthesis mostly
this approach is followed. Spectroscopists usually work with microturbulence
(small scale velocity field) and macroturbulence (large scale).

But contrary to this arbitrary parametrized symetrical broadening, high res-
olution observations indicate line asymetries (bent bisectors) in various types
of stars.

Above figure shows a comparison between a synthesis broadened with the fi-
nal value for vmic is 2 km/s (red) and a parameter free synthesis from a veloc-
ity dynamics model (blue). Both are convolved with instrumental and a small
rotation profile. They agree very well, but one notices that line asymetries
cannot not be (re)produced with the parametrization.
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Bisectors for a star. Full
line are measurements of
one line, the open circles
show the average bisec-
tor of about ten selected
atomic lines, the filled cir-
cles are computations from
synthetic line profiles of the
same lines.
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