BASIC PARAMETERS

HOW TO DETERMINE/HOW WORKS...

- Effective Temperature (Teff)
- Gravity (logg)
- "Rotation" (Vsini)
- Velocities micro/macroturbulence velocity (Vmic, Vmac)

• Abundances – do not considered as fundamental parameters

DETERMINATION OF THE EFFECTIVE TEMPERATURE

- photometry
- spectrophotometry
- hydrogen lines
- line spectroscopy
- tips and tricks

DI	System	Filter	λ.	Δλ1/2	ΗE
	UBV (Johnson-Morgan)	U	3650 Å	700 Å	
	5 - C (C - C - C - C - C - C - C - C - C	B	4400 Å	1000 Å	INE
— • •		V	5500 Å	900 Å	· · · ·
	Six-color (Stebbins-Whitford-Kron)	U	3550 Å	500 Å	
		V	4200 Å	800 Å	
		B	4900 Å	800 Å	
		G	5700 Å	800 Å	
		R	7200 Å	1800 Å	
		Ĩ	10,300 Å	1800 Å	
	Infrared (Johnson)	R	7000 Å	2200 Å	
	202223201 Not 0100	1	8800 Å	2400 Å	
		J	1.25µ	0.38µ	
		K	2.2µ	0.48µ	
		L	3.4µ	0.70µ	
		M	5.0µ	1.2µ	
		N	10.4µ	5.7µ	
	uvbyβ (Strömgren-Crawford)	u	3500 Å	340 Å	
		v	4100 Å	200 Å	
		b	4700 Å	160 Å	
		r	5500 Å	240 Å	
		β	4860 Å	30 Å, 150 Å	
	Washington	c	3910 R	1100 \$	N
	J.	M	5085 8	1050 8	
		T	63 30 R	And	
		Tz	8050 k	1400Å	
	Thuan-Gunn	r	3530 Å	400Å	
		v	39 80 Å	400 K	
		9	49308	2008	
		Q	1 ccn 8	freet	
			6330A	TOOK	

DETERMINATION OF THE EFFECTIVE TEMPERATURE

photometry

Some important remarks:

• in photometry the reddening is of very important, since the parameters are derived using the total flux; in spectroscopy it is not necessary since we normalise the flux

• uncertainties: broad band ~ 10%

narrow band ~ < 5%

• the photometric parameters do not necessary coincide with the spectroscopic parameters; in spectroscopy we derive the parameters that are more suitable for abundance analysis.

DETERMINATION OF THE GRAVITY (log G)

- photometry (see the part on the effective temperature)
- spectrophotometry
- hydrogen lines + but not only
- line spectroscopy
- · tips and tricks

ABUNDANCES

Normalisation to the Sun abundances

The two most common "versions" of the solar abundances:

Grevesse, N, Sauval, A.J. 1998 \rightarrow abundances in LTE

Asplund, M., Grevesse, N., Sauval, A.J. 2005 \rightarrow abundances in NLTE

The abundances from Asplund differ mainly in C,N and O where the NLTE effects are more important.

Always know which are the Sun abundances used for the normalisetion.

References

In addition to what is mentioned for the other lessons:

Balona, L. 1994, MNRAS, 268, 119

Karatas, Y. & Schuster, W.J. 2006, MNRAS, 371, 1793